Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Crystal growth and redetermination of strontium nitride iodide, $\mathrm{Sr}_{\mathbf{2}} \mathrm{NI}$

Andrew S. Bailey, ${ }^{\text {a }} \ddagger$ Duncan H. Gregory, ${ }^{\text {b }}{ }^{*}$ Peter Hubberstey ${ }^{\text {a }}$ and Claire Wilson ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England, and ${ }^{\text {b }}$ WestCHEM, Department of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland
Correspondence e-mail: d.gregory@chem.gla.ac.uk

Received 8 August 2007; accepted 10 August 2007
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K} ;$ mean $\sigma()=0.000 \AA ; R$ factor $=$ $0.061 ; w R$ factor $=0.192$; data-to-parameter ratio $=18.3$.

Single crystals of $\mathrm{Sr}_{2} \mathrm{NI}$ have been grown for the first time. Redetermination from single-crystal X-ray diffraction data confirms the anti- $\alpha-\mathrm{NaFeO}_{2}$ structure, previously found from powder diffraction data [Bowman, Smith \& Gregory (2006). J. Solid State Chem. 179, 130-139]. Iodide ions occupy octahedral voids between layers of edge-sharing NSr_{6} octahedra.

Related literature

For related literature, see: Andersson (1970); Brese \& O’Keeffe (1990); Bowman et al. (2001, 2005, 2006); Ehrlich \& Deissmann (1958); Ehrlich et al. (1964, 1971); Hadenfeldt \& Herdejürgen (1987, 1988); Emons et al. (1964, 1968); Jack et al. (2005); Nicklow et al. (2001); Reckeweg \& DiSalvo (2002); Rietschel \& Baernighausen (1969); Sebel \& Wagner (2004); Wagner (2002).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{INSr}_{2} & Z=3 \\
M_{r}=316.15 & \text { Mo } K \alpha \text { radiation } \\
\text { Trigonal, } R \overline{3} m & \mu=31.99 \mathrm{~mm}^{-1} \\
a=4.0049(6) \AA & T=150(2) \mathrm{K} \\
c=23.055(7) \AA & 0.14 \times 0.04 \times 0.04 \mathrm{~mm} \\
V=320.24(12) \AA^{3} &
\end{array}
$$

Data collection

Bruker SMART1000 CCD areadetector diffractometer
Absorption correction: multi-scan (TWINABS; Bruker, 2007)
$T_{\text {min }}=0.175, T_{\text {max }}=0.278$

682 measured reflections
165 independent reflections
163 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$

[^0]
supplementary materials

Crystal growth and redetermination of strontium nitride iodide, $\mathbf{S r}_{2} \mathbf{N I}$

A. S. Bailey, D. H. Gregory, P. Hubberstey and C. Wilson

Comment

$\mathrm{Sr}_{2} \mathrm{NI}$ belongs to the $\mathrm{A}_{2} \mathrm{NX}(\mathrm{A}=\mathrm{Ca}-\mathrm{Ba}, X=\mathrm{F}-\mathrm{I})$ family of compounds which were originally synthesized several decades ago (Ehrlich \& Deissmann, 1958; Ehrlich et al., 1964; Emons et al., 1964; Emons et al., 1968; Andersson, 1970; Ehrlich et al., 1971). It has only been recently that the structures and properties of these compounds have been revealed (Hadenfeldt \& Herdejürgen, 1987; Hadenfeldt \& Herdejürgen, 1988; Bowman et al., 2001; Nicklow et al., 2001; Reckeweg \& DiSalvo, 2002; Wagner, 2002; Sebel \& Wagner, 2004; Bowman et al., 2005; Jack et al., 2005; Bowman et al., 2006). With the exception of $\mathrm{Ca}_{2} \mathrm{NX}(X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ (Hadenfeldt \& Herdejürgen, 1987; Hadenfeldt \& Herdejürgen, 1988), singlecrystal determinations have been restricted to the lighter halide $(X=\mathrm{F})$ members. These single-crystal determinations have often shown the structures to exhibit important differences to those refined from powder data. We recently investigated the structure of $\mathrm{Sr}_{2} \mathrm{NI}$ using powder X-ray diffraction (Bowman et al., 2006). Now the successful and unprecedented growth of single crystals of a strontium nitride halide $\left(\mathrm{Sr}_{2} \mathrm{NX}\right)$ phase has allowed the single-crystal structure of $\mathrm{Sr}_{2} \mathrm{NI}$ to be determined precisely for the first time. Importantly, this study has allowed an accurate determination of the Sr position within the rhombohedral cell and describes well defined thermal parameters which are elongated only slightly along the c direction for Sr and I and very close to isotropic for N .

The data (obtained at 150 K) show that $\mathrm{Sr}_{2} \mathrm{NI}$ crystallizes in space group $R-3 \mathrm{~m}$ (No. 166). The structure consists of $\left[\mathrm{NSr}_{2}\right]^{+}$slabs in which N is coordinated octahedrally to six Sr atoms. The layers of the edge-sharing NSr_{6} octahedra lie parallel to the $a b$ plane stacked along the c-direction. The iodide ion occupies the octahedral voids between these positively charged $\mathrm{N} — \mathrm{Sr}$ layers. This creates alternating edge-sharing layers of NSr_{6} and ISr_{6} octahedra in a cubic close packed (CCP) arrangement (Fig. 1, Fig. 2).

The $\mathrm{Sr}-\mathrm{N}$ distance is in excellent agreement with that found in the binary subnitride $\mathrm{Sr}_{2} \mathrm{~N}(2.6118$ (3) \AA) (Brese \& O'Keeffe, 1990). Further, the $\mathrm{Sr}-\mathrm{I}$ bond length is also in close agreement with data for $\mathrm{SrI}_{2}(3.3382-3.4142 \AA$) (Rietschel \& Baernighausen, 1969).

Experimental

The title $\mathrm{Sr}_{2} \mathrm{NI}$ crystals were prepared by reaction of SrI_{2} (Aldrich, $99.99+\%$) with distrontium subnitride, $\mathrm{Sr}_{2} \mathrm{~N} . \mathrm{Sr}_{2} \mathrm{~N}$ powder was prepared by the reaction of cleaned Sr metal (Alfa, 99%) with dried nitrogen at 793 K . Due to the air sensitivity of the reactants and products involved, all manipulations were carried out in glove boxes (either recirculating nitrogen-filled or evacuable argon-filled). Stoichiometric ratios of the reactants were thoroughly mixed and ground together, then pressed to form a pellet (calg). The pellet was placed in a molybdenum foil liner and transferred to a stainless steel crucible, which was subsequently welded shut under an argon atmosphere. The sealed crucibles were heated in a tube furnace (1023 K, 5 d) under flowing argon to prevent oxidation of the steel crucibles. The furnace was cooled slowly ($20 \mathrm{~K} \mathrm{~h}^{-1}$). The crucibles were opened in an N_{2}-filled glove-box. Orange irregular crystals were observed on the pellet surface. Crystals were selected

supplementary materials

in a recirculating N_{2}-filled glove-box under an optical microscope and placed under RS3000 perfluoropolyether (Riedel de Haën) on a microscope slide prior to mounting on the diffractometer. The moisture-free viscous perfluoropolyether protects the crystals from atmospheric oxygen and moisture without interfering with the diffraction experiment.

Refinement

Due to twinning present in the crystal the data were integrated using 2 orientation matrices, related by the twin law (-10 $0,110,00-1$), giving 682 reflections, 388 have contributions from only one component -197 only belong to the first component, 186 only to second and 303 have contributions from both components. The fraction of the twin component was refined to 0.183 (6).

Figures

Fig. 1. Polyhedral representation of the structure of $\mathrm{Sr}_{2} \mathrm{NI}$, showing $\left[\mathrm{Sr}_{2} \mathrm{~N}\right]^{+}$layers of edgesharing NSr_{6} octahedra alternating with layers of I^{-}.

Distrontium nitride iodide

Crystal data

INSr_{2}

$M_{r}=316.15$
Trigonal, $R \overline{3} m$
Hall symbol: -R 3 2"
$a=4.0049$ (6) \AA
$b=4.0049$ (6) \AA
$c=23.055(7) \AA$
$\alpha=90^{\circ}$
$\beta=90^{\circ}$
$\gamma=120^{\circ}$
$V=320.24(12) \AA^{3}$
$Z=3$
$F_{000}=408$
$D_{\mathrm{x}}=4.918 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 340 reflections
$\theta=5.3-27.2^{\circ}$
$\mu=31.99 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Needle, orange
$0.14 \times 0.04 \times 0.04 \mathrm{~mm}$

Data collection

diffractometer

Radiation source: sealed tube
Monochromator: graphite
$T=150(2) \mathrm{K}$
ω scans
Absorption correction: multi-scan
(TWINABS; Bruker, 2007)
$T_{\text {min }}=0.175, T_{\text {max }}=0.278$
682 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.192$
$S=1.21$
165 reflections
9 parameters

$$
\begin{aligned}
& 163 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.032 \\
& \theta_{\max }=24.9^{\circ} \\
& \theta_{\min }=5.3^{\circ} \\
& h=-4 \rightarrow 4 \\
& k=-4 \rightarrow 4 \\
& l=-26 \rightarrow 26
\end{aligned}
$$

Special details

Experimental. Data were integrated using 2 orientation matrices, related by the twin law ($-100,110,00-1$). This gave a total of 682 reflections; 379 of these have contributions from only one component, 197 only belong to component 1,186 only to 2 and 294 have contributions from both components.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
I1	0.0000	0.0000	0.0000	$0.0134(11)$
Sr1	0.0000	0.0000	$0.22397(11)$	$0.0095(10)$
N1	0.0000	0.0000	0.5000	$0.019(6)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.0117(11)$	$0.0117(11)$	$0.017(2)$	$0.0059(5)$	0.000	0.000
Sr1	$0.0085(11)$	$0.0085(11)$	$0.0117(17)$	$0.0042(5)$	0.000	0.000
N1	$0.019(7)$	$0.019(7)$	$0.019(18)$	$0.009(4)$	0.000	0.000

Geometric parameters (A, ${ }^{\circ}$)

I1-Sr1 ${ }^{\text {i }}$	3.421 (2)	Sr1—Sr1 ${ }^{\text {iii }}$	3.511 (4)
I 1 - $\mathrm{Sr}^{\text {ii }}$	3.421 (2)	$\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {i }}$	3.511 (4)
I1-Sr1 ${ }^{\text {iii }}$	3.421 (2)	Sr 1 - $\mathrm{Sr}^{\text {vi }}$	3.511 (4)
$\mathrm{I} 1-\mathrm{Sr} 1^{\text {iv }}$	3.421 (2)	$\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{X}}$	4.0049 (6)
$\mathrm{I} 1-\mathrm{Sr} 1^{\text {v }}$	3.421 (2)	$\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{xi}}$	4.0049 (6)
$\mathrm{I} 1-\mathrm{Sr} 1^{\text {vi }}$	3.421 (2)	Sr1—Sr1 ${ }^{\text {xii }}$	4.0049 (6)
Sr1—N1 ${ }^{\text {ii }}$	2.6631 (13)	N1—Sr1 ${ }^{\text {xiii }}$	2.6631 (13)
Sr1-N1 ${ }^{\text {iv }}$	2.6631 (13)	N1—Sr1 ${ }^{\text {vii }}$	2.6631 (13)
$\mathrm{Sr} 1-\mathrm{N} 1^{\mathrm{V}}$	2.6631 (13)	N1-Sr1 ${ }^{\text {xiv }}$	2.6631 (13)
Sr1—I1 ${ }^{\text {vii }}$	3.421 (2)	N1—Sr1 ${ }^{\text {viii }}$	2.6631 (13)
Sr1—I1 ${ }^{\text {viii }}$	3.421 (2)	$\mathrm{N} 1-\mathrm{Sr} 1^{\text {ix }}$	2.6631 (13)
Sr1-I1 ${ }^{\text {ix }}$	3.421 (2)	$\mathrm{N} 1-\mathrm{Sr}^{\text {xV }}$	2.6631 (13)
Sr1 ${ }^{\text {i }}$ - $\mathrm{I} 1-\mathrm{Sr} 1^{\text {ii }}$	180.00 (6)	$\mathrm{I} 1{ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {vi }}$	96.29 (3)
Sr1 ${ }^{\text {i }}$ - $11-\mathrm{Sr} 1^{\text {iii }}$	71.65 (5)	Sr1 ${ }^{\text {iiii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {vi }}$	69.54 (9)
Sr1 ${ }^{\text {ii }}-\mathrm{I} 1-\mathrm{Sr1}{ }^{\text {iii }}$	108.35 (5)	$\mathrm{Sr} 1^{\mathrm{i}}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {vi }}$	69.54 (9)
Sr1 ${ }^{\text {i }}$ - $\mathrm{I} 1-\mathrm{Sr1}{ }^{\text {iv }}$	108.35 (5)	N1 $1^{\text {ii }}$ - $\operatorname{Sr} 1-\mathrm{Sr}^{1}{ }^{\mathrm{X}}$	41.24 (3)
Sr1 ${ }^{\text {ii }}$ - $11-\mathrm{Sr}^{1{ }^{\text {iv }}}$	71.65 (5)	$\mathrm{N} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {x }}$	138.76 (3)
Sr1 ${ }^{\text {iii }}$ - $11-\mathrm{Sr}^{\text {iv }}$	180.00 (6)	$\mathrm{N} 1^{\mathrm{v}}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{X}}$	90.0
$\mathrm{Sr} 1^{\mathrm{i}}$ - $\mathrm{I} 1-\mathrm{Sr}^{1}{ }^{\mathrm{v}}$	108.35 (5)	I1 ${ }^{\text {vii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{x}}$	125.83 (2)
$\mathrm{Sr}^{\mathrm{ii}}$ - $\mathrm{I} 1-\mathrm{Sr} 1^{\mathrm{V}}$	71.65 (5)	I1 ${ }^{\text {viiii }}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {x }}$	54.17 (2)
$\mathrm{Sr} 1^{\text {iii }}-\mathrm{I} 1-\mathrm{Sr}^{\text {v }}$	108.35 (5)	$\mathrm{I} 1{ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {x }}$	90.0
$\mathrm{Sr} 1^{\text {iv }}-\mathrm{I} 1-\mathrm{Sr}^{\text {v }}$	71.65 (5)	Sr1 ${ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {X }}$	55.23 (4)
$\mathrm{Sr1}{ }^{\text {i }}-\mathrm{I} 1-\mathrm{Sr} 1^{\text {vi }}$	71.65 (5)	$\mathrm{Sr} 1^{\mathrm{i}}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{X}}$	124.77 (4)
Sr1 ${ }^{\text {ii }}-\mathrm{I} 11-\mathrm{Sr}^{1{ }^{\text {vi }}}$	108.35 (5)	Sr1 ${ }^{\text {vi}}-\mathrm{Sr} 1-\mathrm{Sr}^{1}{ }^{\mathrm{X}}$	90.0
$\mathrm{Sr} 1^{\text {iii }}-\mathrm{I} 1-\mathrm{Sr1}{ }^{\text {vi }}$	71.65 (5)	$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{xi}}$	138.76 (3)
$\mathrm{Sr}^{\text {iv }}-\mathrm{I} 1-\mathrm{Sr}^{\text {vi }}$	108.35 (5)	$\mathrm{N} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {xi }}$	41.24 (3)
Sr1 ${ }^{\text {v }}$ - $\mathrm{I} 1-\mathrm{Srl}{ }^{\text {vi }}$	180.00 (6)	$\mathrm{N} 1{ }^{\mathrm{v}}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{xi}}$	90.0
$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Sr} 1-\mathrm{N} 1^{\text {iv }}$	97.52 (6)	I1 ${ }^{\text {vii }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{xi}}$	54.17 (2)
$\mathrm{N} 1{ }^{\text {ii }}$ - $\mathrm{Sr} 1-\mathrm{N} 1^{\text {v }}$	97.52 (6)	I1 ${ }^{\text {viii }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{xi}}$	125.83 (2)
$\mathrm{N} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{N} 1^{\mathrm{v}}$	97.52 (6)	$\mathrm{I} 1{ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{xi}}$	90.0
$\mathrm{N} 1^{\text {ii }}-\mathrm{Sr} 1-\mathrm{I} 1^{\text {vii }}$	162.27 (8)	Sr1 ${ }^{\text {iiii }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {xi }}$	124.77 (4)
$\mathrm{N} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{I} 1^{\text {vii }}$	94.14 (2)	$\mathrm{Sr} 1^{\mathrm{i}}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{xi}}$	55.23 (4)
$\mathrm{N} 1{ }^{\mathrm{v}}$ - $\mathrm{Sr} 1-\mathrm{I} 1^{\text {vii }}$	94.14 (2)	$\mathrm{Sr} 1^{\mathrm{vi}}-\mathrm{Sr} 1-\mathrm{Sr1}{ }^{\text {xi }}$	90.0
$\mathrm{N} 1^{\text {ii }}$-Sr1— $1^{\text {viii }}$	94.14 (2)	$\mathrm{Sr} 1^{\mathrm{x}}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {xi }}$	180.00 (15)
$\mathrm{N} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{I} 1^{\text {viii }}$	162.27 (8)	N $1^{\text {ii }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {xii }}$	41.24 (3)
$\mathrm{N} 1^{\mathrm{v}}$-Sr1-I1 ${ }^{\text {viii }}$	94.14 (2)	$\mathrm{N} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {xii }}$	90.0
$\mathrm{I} 1^{\text {vii }} \mathrm{Sr} 1-\mathrm{I} 1^{\text {viii }}$	71.65 (5)	$\mathrm{N} 1{ }^{\mathrm{v}}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{xii}}$	138.76 (3)
$\mathrm{N} 1{ }^{\text {ii }}$ - Srl-I1 ${ }^{\text {ix }}$	94.14 (2)	I1 ${ }^{\text {vii }}$-Sr1—Sr1 ${ }^{\text {xii }}$	125.83 (2)

$\mathrm{N} 1{ }^{\text {iv }}-\mathrm{Sr} 1-\mathrm{I} 1^{\text {ix }}$	94.14 (2)	I1 ${ }^{\text {viii }}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {xii }}$	90.0
$\mathrm{N} 1^{\mathrm{V}}-\mathrm{Sr} 1-\mathrm{Il} 1^{\text {ix }}$	162.27 (8)	I1 ${ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {xii }}$	54.17 (2)
$\mathrm{I} 1^{\text {vii }}-\mathrm{Sr} 1-\mathrm{I} 1^{\text {ix }}$	71.65 (5)	Sr1 ${ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {xii }}$	90.0
I1 ${ }^{\text {viii }}$-Sr1—I $1^{\text {ix }}$	71.65 (5)	Sr1 ${ }^{\text {i }}$ - $\mathrm{Sr} 1 — \mathrm{Sr} 1^{\text {xii }}$	124.77 (4)
$\mathrm{N} 1^{\text {ii }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iii }}$	48.76 (3)	$\mathrm{Sr} 1^{\mathrm{vi}}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{xii}}$	55.23 (4)
$\mathrm{N} 1^{\mathrm{iv}}-\mathrm{Sr} 1 — \mathrm{Sr} 1^{\mathrm{iii}}$	101.45 (10)	$\mathrm{Sr} 1^{\mathrm{x}}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{xii}}$	60.0
$\mathrm{N} 1{ }^{\mathrm{v}}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iii }}$	48.76 (3)	$\mathrm{Sr} 1^{\text {xi }}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {xii }}$	120.0
I1 ${ }^{\text {vii }} \mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iii }}$	141.004 (11)	Sr1 ${ }^{\text {xiii }}$ - $\mathrm{N} 1-\mathrm{Sr} 1^{\text {vii }}$	180.0
I1 ${ }^{\text {viii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iii }}$	96.29 (3)	Sr1 ${ }^{\text {xiii }}-\mathrm{N} 1-\mathrm{Sr}^{\text {xiv }}$	97.52 (6)
I1 ${ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iii }}$	141.003 (11)	Sr1 ${ }^{\text {vii }}-\mathrm{N} 1-\mathrm{Sr} 1^{\text {xiv }}$	82.48 (6)
$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {i }}$	101.45 (10)	Sr1 ${ }^{\text {xiii }}-\mathrm{N} 1-\mathrm{Sr}^{\text {viii }}$	82.48 (6)
$\mathrm{N} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {i }}$	48.76 (3)	$\mathrm{Sr}^{\text {vii }}$ - $\mathrm{N} 1-\mathrm{Sr} 1^{\text {viii }}$	97.52 (6)
$\mathrm{N} 1{ }^{\mathrm{v}}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {i }}$	48.76 (3)	$\mathrm{Sr}^{\text {xiv }}-\mathrm{N} 1-\mathrm{Sr}^{\text {viii }}$	180.0
I1 ${ }^{\text {vii }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {i }}$	96.29 (3)	$\mathrm{Sr} 1^{1 \mathrm{iii}}-\mathrm{N} 1-\mathrm{Sr}^{\text {ix }}$	82.48 (6)
I1 ${ }^{\text {viii }}$ - $\mathrm{Sr} 1-\mathrm{Sr1}{ }^{\text {i }}$	141.004 (11)	Sr1 ${ }^{\text {vii }}$ - 1 1- $\mathrm{Sr}^{\text {ix }}$	97.52 (6)
$\mathrm{I} 1{ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {i }}$	141.003 (11)	$\mathrm{Sr} 1^{\text {xiv }}-\mathrm{N} 1-\mathrm{Sr} 1^{\text {ix }}$	82.48 (6)
$\mathrm{Sr}^{1 i i}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{i}}$	69.54 (9)	$\mathrm{Sr} 1^{\text {viii }}$ - $\mathrm{N} 1-\mathrm{Sr} 1^{\text {ix }}$	97.52 (6)
$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {vi }}$	48.76 (3)	$\mathrm{Sr} 1^{\text {xiii }}-\mathrm{N} 1-\mathrm{Sr}^{\mathrm{xv}}$	97.52 (6)
$\mathrm{N} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {vi }}$	48.76 (3)	Sr $1^{\mathrm{vii}}-\mathrm{N} 1-\mathrm{Sr} 1^{\mathrm{xv}}$	82.48 (6)
N1 ${ }^{\text {v }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {vi }}$	101.45 (10)	$\mathrm{Sr}^{\text {xiv }}-\mathrm{N} 1-\mathrm{Sr}^{\text {xv }}$	97.52 (6)
I1 ${ }^{\text {vii }} \mathrm{Sr} 1-\mathrm{Sr} 1^{\text {vi }}$	141.003 (11)	Sr1 ${ }^{\text {viii }}-\mathrm{N} 1-\mathrm{Sr}^{\text {xv }}$	82.48 (6)
I1 ${ }^{\text {viii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {vi }}$	141.003 (11)	Sr1 ${ }^{\text {ix }}-\mathrm{N} 1-\mathrm{Sr}^{\text {xv }}$	180.00 (10)

Symmetry codes: (i) $-x+2 / 3,-y+1 / 3,-z+1 / 3$; (ii) $x-2 / 3, y-1 / 3, z-1 / 3$; (iii) $-x-1 / 3,-y-2 / 3,-z+1 / 3$; (iv) $x+1 / 3, y+2 / 3, z-1 / 3$; (v) $x+1 / 3$, $y-1 / 3, z-1 / 3$; (vi) $-x-1 / 3,-y+1 / 3,-z+1 / 3$; (vii) $x+2 / 3, y+1 / 3, z+1 / 3$; (viii) $x-1 / 3, y-2 / 3, z+1 / 3$; (ix) $x-1 / 3, y+1 / 3, z+1 / 3$; (x) $x-1, y-1$, z; (xi) $x+1, y+1, z$; (xii) $x-1, y, z$; (xiii) $-x-2 / 3,-y-1 / 3,-z+2 / 3$; (xiv) $-x+1 / 3,-y+2 / 3,-z+2 / 3$; (xv) $-x+1 / 3,-y-1 / 3,-z+2 / 3$.

Fig. 1

Fig. 2

[^0]: \ddagger Current address: AWE Plc., Aldermaston, Reading RG7 4PR, England.

